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SYNOPSIS 

Three- and four-element mechanical analogues are commonly used to describe viscoelastic 
behavior in creep (deformation under constant force or stress) but not in stress relaxation 
(stress response after a suddenly imposed, constant strain). Mathematical models of the 
mechanical analogues in stress-relaxation are re-derived in this work, keeping notation 
familiar to polymer scientists. The relationship is shown to meet consistency tests and 
predicts, with very good accuracy, the behavior of a polyisobutylene sample in stress re- 
laxation when the equation constants were derived from creep experiments. In experiments 
on an actual mechanical analog, the motion of the Voigt element is shown to exhibit a 
maximum stress. Implications for the interpretation of creep and stress-relaxation data 
on the same material are discussed. 0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

Mechanical analogues are useful constructs in the 
description of viscoelastic behavior and are treated 
in some detail in almost all polymer and rheology 
textbooks (e.g., refs. 1-6). A viscoelastic fluid can 
be modeled accurately by the so-called four-element 
model, whereas a viscoelastic solid is often described 
in terms of a three-element model, which is the four- 
element model minus the long-term viscous com- 
ponent. 

The predictions of these models for creep (de- 
formation-time response of a material under con- 
stant load or stress) are easily derived and clearly 
applied. Thus, these models have found common use 
in describing the viscoelastic behavior of polymers, 
composites, foodstuffs, and other like materials in 
creep. The predictions of these models in a stress- 
relaxation test have been known for some time in 
the mechanics but the derivations and no- 
tation have created barriers to their use in the poly- 
mer field. Instead, the generalized Maxwell model 
has been recommended for interpretation of stress- 
relaxation data. This bears no relation to creep, and 
a potentially valuable cross reference is lost. Some 
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practitioners may be unhappy with the infinite 
complexity of the generalized model and are unsure 
of the physical significance of its constants. 

The four-element model and its three-element 
counterpart are convenient engineering models of 
viscoelastic behavior because of their relative sim- 
plicity and their fundamentally correct represen- 
tation of real behavior.’ It would be useful to have 
a working model for stress-relaxation tests. 

In this work the governing differential equations 
are solved by LaPlace transforms, keeping notation 
of common understanding and physical interpre- 
tation in polymer rheology. The resulting predictions 
in stress relaxation are tested with an actual me- 
chanical model of springs and dashpots and with a 
real material in which both creep and stress relax- 
ation data had been obtained. 

THEORY 

The four-element model is a series combination of 
a Maxwell model (elastic and viscous elements in 
series) and a Voigt model (elastic and viscous ele- 
ments in parallel) and is shown in Figure 1. The 
standard notation for the Maxwell elements (El for 
the Hookean, linear elastic modulus, and q3 for the 
Newtonian viscosity) and the Voigt elements (E, 
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Figure 1 
model. 

Schematic representation of the four-element 

and q2) is used. Hooke’s law is used for the elastic 
modulus, 

and Newton’s law for the viscosity. 

Thus, the four-element model usually is described 
as a linear viscoelastic model. 

In a stress relaxation test the mechanical model 
(or real material) is stretched or otherwise deformed 
from an initial rest state to a fixed strain for all time 
thereafter, during which the stress response is mea- 
sured. The stress decays from a maximum at time 
zero owing to the viscous rearrangement of chains 
in a polymeric material, for example, or to the vis- 
cous extension of a shock absorber (dashpot) in the 
mechanical analog. The viscous elements are strain- 
rate dependent, not strain dependent as are the 
elastic elements. 

During stress relaxation each element experiences 
the same stress, because the elements are in series 
(the electrical analogy works well here). However, 

the two elements of the Voigt component (subscript 
“2” in Fig. 1)  are coaxial and attached to each other 
at both ends, and therefore experience the same 
strain at all times. Each element of the Voigt com- 
ponent may or may not carry the same stress, but 
the component as a whole will be subject to the same 
stress as the Maxwell spring ( E l  ) and the Maxwell 
dashpot ( q 3 ) .  

In stress relaxation each element (Maxwell 
spring, Voigt component, and Maxwell dashpot) 
experiences a different strain, but the strains are 
additive to produce the total strain. Thus, 

dttot - 1 da u dtu + - + -  ( 3 )  dt E dt 7 dt  

where tu is the strain in the Voigt component. After 
the step increase in strain in a stress-relaxation test, 
dttot/dt = 0. 

The strain rate term for the Voigt component 
can be derived from its governing equation for stress: 

( 4 )  u ( t )  = tuE + qdt,/dt 

which can be rearranged to read, 

and substituted into eq. ( 3 ) ,  with appropriate sub- 
scripts for the model, 

The strain in the Voigt component is also a func- 
tion of time and needs to be represented without 
reverting to eq. (5) or circularity. If the LaPlace 
transform method is one can more easily 
see a way to solution. The LaPlace transform of eq. 
( 5 )  is, 

The boundary condition for strain at time zero for 
the Voigt component is zero. Therefore, 
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This is valid for the instantaneous strain in response 
to instantaneous stress. No lag exists between the 
two because of the coaxial nature of the Voigt com- 
ponent. The time inverse of eq. (9) is an exponential; 
if the stress is constant, we have the familiar Voigt 
expansion. But in a stress-relaxation test, the stress 
is decaying. Therefore, the immediate response, 
where the stress is largest, will be to expand rapidly; 
but as the stress decays, the Voigt component will 
tend to retract. Thus, eq. (9)  suggests that the Voigt 
component of the four-element model will go 
through a maximum. That is, the Voigt component 
should expand first, then contract during a stress 
relaxation test. 

We proceed to a general solution by taking the 
LaPlace transform of eq. ( 6 ) ,  

The stress a t  time zero ( ao) is not zero here, rather 
it will be a maximum. Substituting eq. ( 9 )  into eq. 
(10) and rearranging gives, 

s l l 1  1 
(11) - _  uo - u ( s ) - + - + - - - x  

El Ei 03 02 7272 (s + 1 / 7 2 )  

where 7 2  = v2/E2. Note that in eq. ( 7 )  the initial 
strain in the Voigt component is zero upon impo- 
sition of stress (the Voigt component responds in a 
viscous rather than an elastic fashion). In contrast, 
the four-element model responds immediately to 
sudden imposition of strain, showing a non-zero ini- 
tial stress as in eq. ( l l) ,  because of the Maxwell 
spring (El ) response. 

Rearranging eq. ( 11) for inversion to the time 
domain, 

which can be further rearranged to 

where 

Note the cross time constants here. 
Equation ( 13) can be inverted by partial fraction 

expansion according to known methods.lO*'l The so- 
lution has the form, 

where Al and A2 are constants determined from the 
partial fraction inversion, and rl and r2 are the roots 
of the quadratic equation in the denominator of eq. 
( 13). Equation ( 13) can be rewritten in general form 
for partial fraction expansion as follows: 

+- A' (18) - A1 -- S + 1 / 7 2  

(s - r l ) ( s  - r2) s - rl s - r2 

Isolating Al by multiplying both sides of eq. ( 18) by 
the denominator of Al , then setting s = rl , yields 

and by analogy, 

The denominator of eq. (13) can be found by mul- 
tiplying out the terms and collecting like powers of 
" 9 ,  s ,  

denom. = s 2  + (1/7* + l / ~ ~ ) s  

The quadratic formula, [ -b * ( b2 - 4uc ) ] /2u, can 
be used to find the roots rl and r2, and since 1 / ~ *  
- 1 / 7 2 1  = 1/731, 

The solution must be real, so both roots must be 
negative. Thus, rl may be taken as the root with the 
positive sign in front of the square root term in eq. 
(22) and r2 the root with the negative sign. This 
means the solution is a complicated expression 
comprising the sum of two exponential decay terms 
with mixed time constants. Thus the equation for 
the four-element model in stress relaxation is eq. 
( 17), where rl and r2 are negative roots found from 
eq. (22) ,  and Al and A2 are found from eqs. ( 19) 
and (20) ,  respectively. 
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DISCUSSION 

Predicting Stress Relaxation of a Polymer 

The theory can be used to predict the stress-relax- 
ation response of a real material when the constants 
have been obtained from a creep test. For Vistanex 
L-80 polyisobutylene at room temperature, data 
from independent tests on the same material are 
available." Stress-relaxation data were obtained by 
the Gehman apparatus, which uses a torsional de- 
formation, and biaxial creep data were obtained by 
a bubble inflation apparatus described in the ref- 
erence. At low deformations ( I 70% ), the elasticity 
of Vistanex L-80 is Hookean. Unfortunately, the 
viscosity is non-Newtonian to quite low rates of de- 
formation. Thus for fair comparison, the deforma- 
tion rates or equivalent times must be matched rel- 
atively closely with the times and deformations of 
the stress-relaxation test in the Gehman apparatus. 

From Figure 21 in ref. 12, the following constants 
for the four-element model representation of the 
creep curve were obtained 

El = 1.6 X lo7 dyn/cm2, 

E2 = 2.1 X lo7 dyn/cm2, 

q3 = 1.4 X 10" P, and 

q2 = 2.4 X 10' P. 

The four-element model in stress relaxation then 
has the following constants: 731 = 875 s, 721 = 15 s, 
T~ = 11.4 s, Al = 566, and A2 = .434. For the two 
exponential decay terms, rl = -.0004 and r2 

The stress-relaxation data (corrected to 23OC 
from 20°C) is compared with the predictions of eq. 
(17) in Figure 2. The fit is quite close. The theory 
appears to predict slightly faster relaxation in the 
early stages; however, this may be due to inaccu- 
racies in the estimate of T~ from the creep data (this 
is the constant with the least accuracy). 

Traditional interpretation of the long-time por- 
tion of the stress-relaxation curve would give a time 
constant of 2450 s, which clearly is not equivalent 
to the long-term time constant in the creep test (as 
may be commonly assumed). But the theory shows 
that it should not be. The long-time behavior of the 
four-element model in stress relaxation is governed 
by all three time constants, only one of which is the 
Maxwell element time constant (731).  The other is 
the Voigt component time constant ( T ~ ) ,  and the 

= -.1546. 

third is a cross value between the Voigt dashpot and 
the Maxwell spring ( T~~ ) . The theory predicts no 
interaction between the Maxwell dashpot and the 
Voigt component (there is no 732) .  

The dominant exponential is the Al term, which 
has a very small root, therefore accuracy in calcu- 
lating the roots, especially the one close to zero, is 
very important. 

What is the role of the Voigt component in stress 
relaxation? It is commonly assumed in thinking 
about viscoelasticity, that the Voigt response gov- 
erns the short-time relaxations, as it does in creep. 
This depends on the relative value of the time con- 
stants, but appears to be generally true for most real 
materials. The assumption goes further, however, 
and says that once the Voigt response is over (fol- 
lowing the creep behavior) then the long-time re- 
sponse is governed by the Maxwell element alone. 
This is true in creep but is clearly not true in the 
stress relaxation of a four-element model. Figure 2 
implies the Voigt response is never quite finished; 
it goes through a maximum and still shows some 
response at long time. The theory shows this by in- 
cluding Voigt component time constants in the roots. 
If the Voigt component were frozen ( q 2  = infinity, 
hence r2's are also infinity), then the equation for 
the roots shows r1 = 0 and r2 = - l / ~ 3 1 ,  and Al = 0 
and A2 = 1.0. This gives single exponential behavior 
with a Maxwell element time constant. Thus, the 
theory matches expectations for this case. It seems 
highly unlikely in a real material that the Voigt 
component would ever be frozen out, and conse- 
quently one has the complex long-time behavior 
shown by both the theory and a real material (such 
as Vistanex L-80 in Fig. 2) .  As long as there is stress, 
the Voigt component will be responding: its response 
will not disappear until the stress does. Long-time 
relaxation, then, cannot be the relaxation of a purely 
Maxwell element. This also says one cannot get re- 
laxation times from a stress relaxation test, if the 
four-element model is used to describe the behavior. 

The Viscoelastic Solid 

A viscoelastic solid is often modeled by a three-ele- 
ment derivative of the four-element model. Take 
away the Maxwell dashpot and one has a three-ele- 
ment model capable of predicting responses in a vis- 
coelastic solid [ i.e., a material without a long-term 
viscous response (flow) 1. Cross-linked polymers fall 
into this category. 

The creep response of such a model is well known, 
viz. a sudden purely elastic response, followed by a 
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CI Data (Poly isobutylene. Vistanex L-60) 

4 Element Model 

0 200 4 0 0  600 600 1000 
Tlme, sec 

Figure 2 Stress relaxation of Vistanex L-80 at 23°C 
(data points) compared with the predictions of the four- 
element model equation in stress relaxation with the con- 
stants determined in creep. 

rising exponential of the form 1 - exp( - t / r )  to a 
limiting, asymptotic strain or deformation. What 
does the theory predict for stress relaxation of the 
same material? Clearly the stresses should not relax 
to zero. 

Solving eqs. (17),  (19),  ( Z O ) ,  and (22)  with 731 

= co gives rl = 0, r2 = - ( 1 / ~ ~ ~  + 1/72), Al = El/ 
(El + E 2 )  and A2 = E 2 / ( E 1  + E 2 ) .  This yields the 
response curve shown in Figure 3. The time response 
is governed not solely by the Voigt time constant, 
r2 ,  but by a combination of that with a cross time 

r-0.01544 

r-0,001544 E 
Y 

Polnts calculated from 3-element model 
of viscoelaslic solid 

.1 I 

0 200 4 0 0  600 800 1000 
Tlme, sec 

Figure 3 
three-element model of a viscoelastic solid. 

Prediction of stress-relaxation behavior in a 

constant involving the Voigt viscous element and 
the Maxwell spring ( rZ1 ) . The long-time behavior 
shows constant residual stress, as expected. The 
fraction of original stress remaining is given by A1. 
The time it takes to reach that state may be rea- 
sonably approximated by 5 to 7 time constants, 
where the time constant is given by -1/r2. Multiples 
of the time constants for Vistanex L-80 are used to 
show relative relaxation dependence on those values. 

Voigt Component Motion 

Stress-relaxation tests were carried out on an actual 
mechanical model of springs and dashpots (shock 
absorbers) by attaching the upper, Maxwell spring 
to an I-beam in the ceiling and weighting the bottom 
of the same spring, so that the unstressed lower 
Voigt element and Maxwell dashpot could be at- 
tached to an eyelet embedded in the floor without 
stress. A t  time zero the weight was removed by re- 
leasing a vise-grip turnbuckle, and stress relaxation 
commenced. While the overall strain remained the 
same, the distances of the upper spring base and the 
lower dashpot top were measured as a function of 
time. Since the total distance was always the same, 
the distance the middle Voigt element stretched 
could be obtained by difference. 

Typical results of this test are shown in Figure 
4. Curve "S" is the length of the Maxwell spring; 
curve "D" is the length of the Maxwell dashpot (an 
automotive shock absorber in this case). The move- 

n r  

E 
I 

I 

"." I 

0 2 0  4 0  60 

Tlme, sec 

Figure 4 Relaxation in an actual mechanical analog, 
curve S is Maxwell spring motion, curve D is the Maxwell 
dashpot motion, curve V is the motion of the Voigt com- 
ponent. 
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ment of the Voigt element is shown by curve “V,” 
which is the difference between the upper and lower 
curves, as it must be. The sum of the three curves 
at any point in time is always 1.14m * 0.01. Both 
curves “S” and “D” show relaxation, but their dif- 
ference, which is the length-time characteristic of 
the Voigt element, shows a maximum. This is pre- 
dicted by the theory, and would not have been evi- 
dent in normal testing, unless the sample were an 
actual mechanical model as presented here. A poly- 
meric sample would have given only the overall 
stress decay curve, so the theory could not have been 
completely tested by this alone. 

Good quantitative stress-relaxation data could 
not be obtained with this apparatus because of con- 
trol and alignment problems resulting in extra 
sources of friction, such as between spring and shock 
absorber in the (coaxial) Voigt component, and 
various nonidealities in the shock absorber itself. 

CONCLUSIONS 

This work reinterprets the behavior of the 4-element 
model in stress relaxation and provides a common 
link between creep and stress-relaxation behavior 
of a single material. The three- and four-element 
models are relatively simple, intuitively satisfying, 
and generally accurate descriptors of viscoelastic 
behavior. The predictive ability for real viscoelastic 
materials is shown to be quite good. The three-ele- 
ment formulation shows quantitative predictions for 
a viscoelastic solid in stress relaxation with its 
unique “residual stress” reaction at long times. It 
has also been demonstrated that the Voigt compo- 
nent of a four-element model shows a maximum in 
deformation in stress relaxation, and that its re- 
sponse cannot be assumed to disappear at long times. 
Consequently, the long time behavior in creep and 
stress relaxation are not equivalent. The four-ele- 
ment model widely used to describe creep can now 
also be used to predict the stress-relaxation behavior 
of viscoelastic materials, uncrosslinked or cross- 
linked polymers, foodstuffs, pharmaceuticals, or the 
like. 

The author thanks senior project student, John Mc- 
Cartney, and technician Chris Lynch for their assistance 
in constructing the actual mechanical analog and in data 
collection. 

NOMENCLATURE 

A = constant (dimensionless) 
E = elastic modulus, u / t  (dyn/cm2) 
t = strain, dL/L, (dimensionlesss) 
t = viscosity, a/(&/&) ( P )  
1 = length (m) 
r = root (time-’) 
s = LaPlace domain variable (time-’) 
u = stress (dyn/cm2) 
t = time ( s )  
7 = relaxation time, t / E  ( s )  
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